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Abstract

There is an increasing prevalence of streaming data generation in diverse fields like
healthcare, finance, social media, and weather forecasting. In order to acquire helpful
insights from these massive datasets, timely analysis is essential. In this article, we
assume that the streaming data are analyzed in batches. Traditional offline methods,
which involve storing and analyzing all individual records, can be repeatedly applied
to the cumulative data, but encounter significant challenges in storage and computing
costs. Existing online methods offer faster approximations but most methods neglect
model uncertainty, causing overconfidence and instability. To bridge this gap, we pro-
pose novel online Bayesian approaches that incorporate model uncertainty within a
Bayesian model averaging (BMA) framework, for generalized linear models (GLMs).
We propose computationally efficient methods to update the posterior, with individual
records from the latest batch of data and summary statistics from previous batches. We
demonstrate using simulation studies and real data that our methods can offer much
faster analysis compared to traditional methods, with no substantial drop in accuracy.

Key words: Generalized linear models, Logistic regression, Posterior inclusion prob-
ability, Markov Chain Monte Carlo, Screening, Separation.

1 Introduction

Streaming data refers to data that are being generated continuously over time. For example,

data generated by smart devices such as apple watch or fitbit would fall under this category.

We assume scenarios in which data are collected in batches over time, and the primary
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goal is to analyze the full dataset after each new batch of data arrives. If data on all

individual records are saved for all batches, conventional methods can be used for statistical

analysis, which is also referred to as offline methods. For long streams of data, storing

all individual records may require infeasibly costly amounts of disk space. Furthermore,

repeatedly analyzing such large datasets using conventional methods can be computationally

intensive and so slow that the method is no longer useful. Online methods treat conventional

methods as the gold standard in terms of accuracy, and offer faster and computationally more

feasible approximations to this benchmark. Most existing online methods analyze the data

using a single model and ignore model uncertainty, which leads to issues like overconfidence,

potentially misleading inference and model instability. Thus there is a critical need for

development of online methods that take into account model uncertainty, which can be

naturally incorporated into the prior probability distribution in a BMA framework. Relying

solely on analyzing the entire data stream with a single model could result in researchers

and decision-makers losing or distorting crucial data characteristics.

In this article, our goal is to develop computationally efficient methods to analyze stream-

ing data with Bayesian GLMs, specifically addressing variable selection uncertainty. We pro-

pose online Bayesian methods that update the posterior distribution over the model space,

using individual records from the most recent batch of data and summary statistics from

past batches. Our method would enable data analysts to employ more flexible models for

streaming data without the computational burdens associated with conventional methods.

Online learning methods are designed to analyze data that arrive in sequential batches

to answer successive questions of interest while mitigating storage and computing cost. In

the realm of parametric models, many online learning methods focus on renewed estimation

of unknown parameters using the maximum likelihood principle or its regularized versions,

based on the newest batch of data and summary statistics of the historical data.

In the context of GLMs, some examples of online learning solutions include the stochastic
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gradient descent (SGD) (Robbins and Monro, 1951); an enhanced version called the implicit

SGD (Toulis et al., 2014) which is more robust to learning rate mis-specification; online

iterative algorithms for linear models and estimating equations (Schifano et al., 2016), an

online one step iteratively reweighted least squares (IRWLS) (Zhang and Yang, 2021), and

a renewable estimator (Luo and Song, 2020) that enjoys smaller bias and standard errors,

and provides richer inference like confidence intervals.

Several methods have been proposed for online model selection. These include online

criterion based (such as AIC, BIC, and DIC) variable selection methods for linear regression

models (Wang et al., 2016), recursive model selection for high dimensional GLMs with esti-

mation of parameters via score equations (Shi et al., 2021), and more recently the debiased

stochastic gradient descent and the online debiased lasso (Luo et al., 2023; Han et al., 2024),

which conducts variable selection and inference for high dimensional GLMs, using only sum-

mary statistics of the historical data. The majority of these methods perform non Bayesian

variable selection, with the exception of DIC (Wang et al., 2016), but the latter has been

developed in the context of linear regression models.

The Bayesian approach has advantages in addressing uncertainty more explicitly via prior

distributions. Despite substantial literature in BMA, which we introduce in Section 2, there

is limited previous work on online BMA methods. One of the earliest papers on online

model selection is by Sato (2001), who combined the idea of sequential model selection

with online variational Bayes, and proposed an online model selection algorithm, which was

applied to a mixture of Gaussian models. McCormick et al. (2012) considered dynamically

weighted model averages for logistic regression, where the parameters for each model are

treated as latent variables that follow their own state space models. Onorante and Raftery

(2016) proposed a dynamic version of Occam’s window for dynamic linear models, when the

original version of dynamic model averaging becomes computationally intensive with many

predictors. In the dynamic model averaging setting, the data generating mechanism changes
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at every time point. In contrast, we focus on models that have parameter values that are

stable over a long term, and use the idea of renewable estimation for online updating of the

posterior distribution over models.

In Section 2, we review the Bayesian approach to model uncertainty. In Section 3, we

introduce our online methods for BMA in GLMs. Simulation studies for logistic regression

are presented in Section 4, and an online analysis of occupant level data on traffic crashes

is conducted in Section 5. Finally, a summary of the contributions in this paper and future

directions are presented in Section 6.

2 Bayesian Variable Selection and Bayesian Model Av-

eraging

In high dimensional model selection with many covariates, usually no single model stands

out. A possible solution is to adopt a framework of BMA. This approach incorporates

model uncertainty using a hierarchical probabilistic framework. Instead of selecting a single

model, this framework allows us to combine models by taking a mixture of all models in

the model space with posterior probabilities of models serving as the mixture weights, given

the observed data. This has been empirically demonstrated to improve upon the predictive

performance of a single model (Hoeting et al., 1999).

We provide a brief overview of the Bayesian approach to model uncertainty. Let γ =

(γ1, . . . γp)
′ denote a vector of indicator variables, such that γj = 1 when the model includes

the covariate xj as a column in the design matrix Xγ , and γj = 0 otherwise. Thus the entire

list of 2p models can be represented by all possible configurations of γ, and is denoted by

Γ. Consider a model γ with qγ predictors for the response variable y, that is
∑p

j=1 γj = qγ ,

and let βγ denote the corresponding qγ dimensional vector of nonzero regression coefficients.

Given the data distribution for the response variable y, a prior distribution is specified on
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all unknown parameters: βγ |γ ∼ p(βγ |γ), γ ∼ p(γ). Posterior inference is then based on

π(βγ ,γ|D), which is composed of two parts. Within each model γ, the posterior on the

model parameters is given as

π(βγ |γ, D) =
L(βγ ;D) p(βγ |γ)∫
L(β′

γ ;D) p(β′
γ |γ) dβ′

γ

=
L(βγ ;D) p(βγ |γ)

m(D|γ)
,

where m(D|γ) =
∫
L(β′

γ ;D) p(β′
γ |γ) p(γ) dβ′

γ is the marginal distribution of the data under

model γ, which is also referred to as the marginal likelihood corresponding to the model γ.

Equipped with the marginal likelihood, the posterior distribution over models is given as

π(γ|D) =
m(D|γ) p(γ)∑

γ′∈Γm(D|γ ′) p(γ ′)
. (1)

Even for static data sets with a moderate sample size n, evaluation of the denominators

in the above equations poses computational challenges. The first difficulty is the lack of an

analytical expression for the integral m(D|γ) except in normal linear models with conjugate

priors. Various approximations are available form(D|γ), see Raftery (1996) for more details.

A commonly used approximation is provided by

π̃(γ|D) =
exp{−1

2
BIC(γ)}p(γ)∑

γ′∈Γ exp{−
1
2
BIC(γ ′)}p(γ ′)

, (2)

where BIC(γ) is the usual Bayesian information criterion for model γ, and given by

BIC(γ) = −2l(β̂γ ;D) + qγ log(n) , (3)

where l(β̂γ ;D) is the loglikelihood under model γ, evaluated at the MLE. This approximation
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allows us to calculate the relative posterior probability

π̃(γ|D)

π̃(γ ′|D)
= exp{−1

2
(BIC(γ)− BIC(γ ′))} p(γ)

p(γ ′)
, (4)

between any two models, γ and γ ′, but not the actual probabilities.

Obtaining the actual probabilities in (2) is the second difficulty. Analytically, this

would require summing over all models in Γ, in the denominator of (2). This calculation is

possible but potentially expensive for p < 25, and prohibitively expensive for a larger value

of p. For standard computers one would typically run out of computer memory for p > 30.

A solution is to replace the enumeration of all 2p terms by a stochastic exploration, e.g.,

a Markov chain that visits the γs with relatively high posterior probability, such that the

invariant distribution of the chain is π̃(γ|D). In practice, the proportion of times the Markov

chain visits a specific model γ can be used as a Monte Carlo estimate of π̃(γ|D). Note that

the construction of such a Markov chain only requires the relative posterior probabilities in

(4). For large p, MCMC (or other) algorithms have been adopted by several authors (George

and McCulloch, 1993; Madigan and York, 1995; George and McCulloch, 1997; Raftery et al.,

1997; Hans et al., 2007; Carvalho et al., 2010; Liu et al., 2014; Williams et al., 2023; Nie

and Ročková, 2023) to explore promising regions of the model space. In the next section, we

discuss how to solve the above two difficulties in an online setting.

3 Online BMA for Generalized Linear Models

Let yi denote the response variable, and let xi denote the covariates, for i = 1, 2, . . . , n. A

generalized linear model (GLM) (Jørgensen, 1987; Agresti, 2013) assumes that dataset D

consists of independent observations (xi, yi), i = 1, . . . , n, such that conditional on xi, yi are
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generated from

f(yi|θi, ψ) = exp

{
c(yi, ψ) +

yiθi − b(θi)

a(ψ)

}
, i = 1, . . . , n, (5)

where the GLM links the mean µi = E(yi|θi, ϕ) to a linear predictor xi
Tβ via a link function

g(.), such that g(µi) = xi
Tβ. For the canonical link function g(µi) = θi. Here β is the

regression parameter of interest and ψ is called a dispersion parameter. Some components

of β maybe zero, meaning that the corresponding covariates are not associated with the

response variable. Some of our inference goals include estimating the regression parameters

and predicting the response variables for new observations with observed covariates.

When ψ is known, such as in logistic or Poisson regression, the loglikelihood associated

with dataset D is a summation of n terms, given by

l(β;D) =
n∑

i=1

c(yi, ψ) +
1

a(ψ)

n∑
i=1

(yiθi − b(θi)) . (6)

Let ∇ and ∇∇ denote the gradient and the Hessian operator for differentiable multi-

variable functions, respectively. Let β̂ denote the maximum likelihood estimator (MLE),

such that β̂ = argmaxβ l(β;D) and ∇l(β;D) = 0. Denote J = −∇∇l(β;D) and Ĵ =

−∇∇l(β̂;D). For the remainder of this proposal we focus on models with a known disper-

sion parameter ψ, but the methods can be extended to the case of an unknown ψ by using

a consistent estimator of ψ as in Luo and Song (2020).

Suppose at each time point b = 1, . . . , B, a new batch of data Db of size nb arrives. The

aggregated data by time b is D∗
b = D1 ∪ · · · ∪Db of size Nb = n1 + · · · + nb. For clarity, we

will suppress the dependence of βγ on γ in the notation in this subsection, and simply refer

to it as β. The loglikelihood associated with Db is denoted by l(β;Db), and that associated

with D∗
b is l(β;D∗

b ) = l(β;D∗
b−1) + l(β;Db). Let β̂b = argmaxβ l(β;D

∗
b ) denote the MLE at

time b. Finally, at time point b, denote the observed Fisher information matrix and its value
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at the MLE by Jb(D
∗
b ;β) = −∇∇l(β;D∗

b ) and Ĵb = Jb(D
∗
b ; β̂b) respectively.

3.1 Addressing the First Difficulty of Intractable Marginal Like-

lihood

Evaluation of the loglikelihood in (6) and its associated features like the gradient vectors

and Hessian matrices is critical for inference in GLMs. However, the computation of these

quantities becomes expensive when Nb is large as the loglikelihood by batch b involves a

summation over Nb terms. To reduce the computational burden, one possible solution is to

approximate quantities at time b based on subject level data only for the current batch of

data Db (of size nb), together with summary statistics from historical data D∗
(b−1). One of the

main contributions of this work is to use such an online framework to perform approximate

BMA. Based on (2) and (3), this task requires evaluating the following at each time b:

β̂b (the MLE of β given the aggregate data D∗
b ), and (7)

l(β̂b;D
∗
b ) . (8)

For the MLE in (7), Luo and Song (2020) introduced an online method called renewable

estimation. The renewable estimate at time b, denoted by β̃b, depends on the current data

Db and summary statistics of the historical data: an estimate of the regression coefficients,

β̃(b−1), and the aggregated negative Hessian matrix evaluated at past estimates, J̃(b−1) =∑b−1
j=1 Jj(Dj; β̃j). Luo and Song (2020) showed that the renewable estimate is asymptotically

equivalent to the MLE, as Nb → ∞. Below, we provide two solutions to approximate the

likelihood in (8) using quantities already available from the aforementioned renewable online

method.
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3.2 The Online 1 Method

At batch b = 1, we use the available datasetD1 to calculate and record summaries (β̃1, l(β̃1;D1)),

where β̃1 is the usual or offline MLE β̂1 based on D1. After this batch, the individual records

in D1 are deleted. At batch b = 2, we have access to the individual records in dataset D2

and summaries from the previous batch. The loglikelihood evaluated at the renewable MLE,

at batch b = 2, is given by

l(β̃2;D
∗
2) = l(β̃2;D1) + l(β̃2;D2) . (9)

The first term l(β̃2;D1) in the above equation cannot be calculated, because the individual

records in the previous batch D1 are no longer accessible. We propose to approximate it by

a Taylor expansion:

l(β̃2;D1) ≈ l(β̃1;D1) + (β̃2 − β̃1)
T∇(β̃1;D1) = l(β̃1;D1) + 0 ,

where the second term is zero because the gradient of the loglikelihood evaluated at the MLE

is 0. Hence our approximation for l(β̃2;D
∗
2) at batch b = 2 is

ľ2 = l(β̃1;D1) + l(β̃2;D2).

We record the summaries (β̃2, ľ2) and discard the individual records in D2. Moving on to

time b = 3, we use the approximation

l(β̃3;D
∗
3) = l(β̃3;D1) + l(β̃3;D2) + l(β̃3;D3)

≈ l(β̃1;D1) + l(β̃2;D2) + l(β̃3;D3) = ľ2 + l(β̃3;D3) =: ľ3
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and record (β̃3, ľ3).

Extending the above technique to a generic batch b, where b ≥ 3, we will have access to

the observations in dataset Db and summaries from the past batch (b − 1): (β̃(b−1), ľ(b−1)).

Here, ľ(b−1) = l(β̃1;D1) + l(β̃2;D2) + · · · + l(β̃(b−1);D(b−1)) serves as an approximation to

l(β̃b;D1) + l(β̃b;D2) + · · ·+ l(β̃b;D(b−1)). Hence

l(β̃b;D
∗
b ) = l(β̃b;D1) + l(β̃b;D2) + · · ·+ l(β̃b;Db) ≈ ľ(b−1) + l(β̃b;Db) = ľb .

We record the summaries (β̃b, ľb), which are the online estimates of the quantities in (7)-(8),

and their values at batch b will be used for the inference for BMA after the bth batch of

dataset arrives, for b = 1, 2, . . . , B.

3.3 The Online 2 Method

To improve the accuracy of the first-order Taylor expansion of the loglikelihood l(.) in the

Online 1 approximation, the Online 2 method adopts a second-order expansion. The Online

2 method requires an additional Hessian matrix at each time b. Importantly, this Hessian

matrix is already calculated and recorded in the online algorithm for the renewable estimator

β̃b, hence does not add much additional computing effort.

At batch b = 1, we use the available dataset D1 to calculate and record the summaries

(β̃1, l(β̃1;D1), J̃1 = −∇∇l(β̃1;D1)), where β̃1 is the offline MLE β̂1 based on D1. The

dataset D1 is then assumed to be removed from the hard drive.

At batch b = 2, we have access to the entire dataset D2 and summaries from the previous

batch b = 1. The loglikelihood at the renewable MLE is l(β̃2;D
∗
2) = l(β̃2;D1) + l(β̃2;D2).
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In the absence of the dataset D1, the first term requires an approximation:

l(β̃2;D1) ≈ l(β̃1;D1) + (β̃2 − β̃1)
T∇l(β̃1;D1) +

1

2
(β̃2 − β̃1)

T∇∇l(β̃1;D1)(β̃2 − β̃1)

= l(β̃1;D1) + 0− 1

2
(β̃2 − β̃1)

T J̃1(β̃2 − β̃1)

where the last equality is due to ∇l(β̃1;D1) = 0, because the gradient of the loglikelihood

evaluated at the MLE is 0.

The above suggests an approximation for l(β̃2;D
∗
2), which we denote by l̃2:

l̃2 = l(β̃1;D1)−
1

2
(β̃2 − β̃1)

T J̃1(β̃2 − β̃1) + l(β̃2;D2),

and record (β̃2, J̃2, l̃2).

We next extend the algorithm to a generic bth batch for b ≥ 3.

For a generic batch b ≥ 3, we have on record: (β̃b−1, J̃b−1, l̃b−1), and the entire bth batch

Db. At batch b, we need to evaluate l(β̃b;D
∗
b ) = l(β̃b;D

∗
(b−1)) + l(β̃b;Db). The second term

of the right hand side can be evaluated directly. The first term requires an approximation:

l(β̃b;D
∗
(b−1)) ≈ l(β̃(b−1);D

∗
(b−1)) + (β̃b − β̃(b−1))

T
∇l(β̃(b−1);D

∗
(b−1))

+
1

2
(β̃b − β̃(b−1))

T∇∇l(β̃(b−1);D
∗
(b−1))(β̃b − β̃(b−1)) .

(10)

Now we approximate each of the three terms on the right hand side of (10).

An approximation of the first term in (10), l(β̃(b−1);D
∗
(b−1)), is l̃(b−1), readily available from

the record of summaries of past batches. The second term in (10) is close to zero, as

∇l(β̃(b−1);D
∗
(b−1)) ≈ ∇l(β̂(b−1);D

∗
(b−1)) = 0.
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Concerning the third term in (10),

∇∇l(β̃(b−1);D
∗
(b−1)) =

b−1∑
j=1

∇∇l(β̃(b−1);Dj) ≈
b−1∑
j=1

∇∇l(β̃j;Dj) = −J̃(b−1) ,

where J̃(b−1) is again part of the “historical data” from the previous batch (b− 1).

Thus our final approximation for l(β̃b;D
∗
b ) denoted by l̃b is

l̃b = l̃(β̃b−1;D
∗
b−1)−

1

2
(β̃b − β̃b−1)

T J̃b−1(β̃b − β̃b−1) + l(β̃b;Db).

After processing the data in batch b, we record (β̃b, J̃b, l̃b) and the dataset Db can be from

storage.

3.4 BMA With Online Methods for Small p

For any batch b, and a given model γ, one can approximate the loglikelihood evaluated at the

MLE, l(β̂bγ ;Db
∗), based on the Online 1 or the Online 2 methods. We denote these estimators

by ľb,γ and l̃b,γ , respectively. Note the notation are extensions from ľb or l̃b to include index

of the model under consideration. Equipped with the approximate loglikelihood, one can

now approximate the BIC for all models γ in the model space Γ using (3). Then one can

calculate the posterior probabilities of all 2p models via (2) for BMA. As enumeration of all

models is typically not possible for p > 30, we provide a method to overcome this difficulty

for large p in the next section.

3.5 Addressing the Second Difficulty for Large p via MCMC Sam-

pling for Streaming Data

In this section, we focus on the situation where we would like to explore different models

indexed by γ and make inference based on online posterior approximations, π̃(γ|D), when
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enumeration of all models in Γ is computationally infeasible. The types of inference may

include prediction of the response variable, estimation of the regression coefficients, variable

selection and so on. In classical offline settings for model exploration, MCMC can be used

to visit the most promising γs. The challenge of implementing this when combined with the

online set up, is that for our online approximations to work for any model γ at time b, the

summaries of this particular γ from time t < b also need to be available. Since enumeration

of all 2p models in Γ is not possible, a potential solution is we we first select a promising

subset of models, and then record the online summary statistics such as MLE, loglikelihood,

and Hessian for this chosen subset. This implies inference for BMA will be restricted to this

particular pool of models in the subsequent batches. So, it is important to identify a good,

sufficiently large candidate pool of models.

In order to provide an online solution to BMA, based on a promising pool of models, we

propose a method that consists of two stages:

i) a screening stage, in which MCMC sampling is employed to select a good subset of

models, and

ii) a post screening stage, during which we provide an online approximation for BMA, as

in Section 3.4, except that here it is not for the entire model space Γ, but the chosen subset

of Γ, determined in the above screening stage.

Note that in the offline scenario, the MCMC solution runs a Markov chain that has

π̃(γ|D) as its invariant distribution. A popular MCMC algorithm for Bayesian variable

selection is the MCMC model composition, also known as the MC3 algorithm (Madigan and

York, 1995; Raftery et al., 1997; Clyde et al., 2011; Ghosh and Tan, 2015). In the online

scenario, let B0 be a relatively small number of batches, such that the computational cost

of the offline MCMC for D∗
B0

is not expensive. For each of the time points b = 1, . . . , B0,

we run an offline MC3 Markov chain, {γ [b](0),γ [b](1), . . . ,γ [b](T )}, with a target distribution

π̃(γ|D∗
b ) analogous to that in (2).
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We perform stability checks of the pool of sampled models at batches b = 1, · · · , B0,

respectively, to track their stability across successive batches. When stability is reached

the screening stage is ended. Specifically, we choose a metric that measures the stability

of predictions. Let λ
[b]
i denote an MCMC estimate for the mean of the posterior predictive

distribution for a future response variable, say Ỹi. We check the following metric for stability:

√√√√ 1

Nb

Nb∑
i=1

(λ
[b]
i − λ

[b−1]
i )2 (11)

against a pre-specified threshold. We will discuss the definition of λ
[b]
i in the context of

logistic regression, in more details in the next section on simulation study.

4 Simulation Study for Online BMA for Logistic Re-

gression

We conduct simulation studies that compare the results from the traditional offline BMA

method, with the Online 1 and 2 methods, and the full model offline MLE, for p = 10 and

p = 50, which excludes the intercept term. For p = 10, we always include the intercept term,

and each of the remaining 10 variables can be included or excluded from the model, which

leads to a model space with 210 = 1, 024 models. Since this is a reasonably small model space,

we can list all 1, 024 models in the computer memory and perform BMA with all models in

Γ. This is sometimes referred to as an enumerable model space, because all models can be

stored in the computer memory. For p = 50, the model space Γ has 250 = 1.1259 × 1015

models. Since all models cannot be stored, this is called a non-enumerable model space. For

both cases, we use a discrete uniform prior, that is p(γ) = 1/2p. We describe our simulation

study results for these two scenarios, in more detail below.
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4.1 Enumerable Model Space

We generate one hundred datasets from the logistic regression model with p = 10. The

covariates are generated independently from a normal distribution with mean 0 and standard

deviation 3. The regression coefficients are set to 0.2 for the first five coefficients including

the intercept term and the rest are 0. We consider B = 100 batches where the batch size

is nb = 100 for each batch. The regression coefficients are estimated using β̂[b], which is

the BMA estimate of β for batch b. For the bth batch, with aggregated data D∗
b , the BMA

estimate is given by

β̂[b] =
∑
γ∈Γ

β̃[b]
γ π̃(γ|D∗

b ), (12)

where β̃
[b]
γ = β̂

[b]
γ for γj = 1, β̃

[b]
γ = 0 for γj = 0, β̂

[b]
γ is the MLE and π̃(γ|D∗

b ) is the posterior

probability for model γ, for the bth batch. The offline method uses the offline MLE and

posterior probability to compute these quantities. Online 1 and 2 methods use the renewed

estimate of MLE (Luo and Song, 2020), and the Online 1 or 2 approximations to the loglike-

lihood, respectively, proposed by us in the previous section, for approximation of π̃(γ|D∗
b ).

The root mean squared errors (RMSE) for estimating the true regression coefficients are

computed for all methods and shown in the top panel of Figure 1. Overall, the online BMA

methods have similar RMSE as the gold standard offline BMA. Furthermore, we see an ad-

vantage of the second order Taylor expansion used in Online 2, as it tends to have a smaller

RMSE than Online 1 throughout. The RMSE of all methods decrease as the batch sizes

increase, and the aggregate data size increases, as expected.

For prediction, we generate a new design matrix and new response variables, according

to the aforementioned true model with sample size NB = 10, 000. We use the following

definition of RMSE for prediction:

RMSE =

√∑NB

i=1 (Ỹi − P̂ (Ỹi = 1))2

NB

, (13)
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where Ỹi is the response variable in the test set of size NB, and P̂ (Ỹi = 1) is its BMA

estimate from the offline and online methods, for i = 1, . . . , NB. We also calculate an oracle

RMSE which is the best case scenario when an oracle method uses the true P (Ỹi = 1)

in the data generating model as the estimate. The RMSE for prediction is shown in the

bottom panel of Figure 1. We observe a similar trend as the plot in the top panel: both

online methods are good approximations of the offline method, with Online 2 being a better

approximation consistently. All methods approach the oracle RMSE value as the batch size

increases. Running times for offline and online Bayesian methods for a single replicate, and

looping through all batches 1, 2, . . . , B, are approximately 1273 and 28 seconds respectively,

that is the running time of the offline method is about 45 times that of the online

methods. The full model offline MLE is less accurate than the BMA methods.

4.2 Non-enumerable Model Space

We now generate one hundred datasets from the logistic regression model with p = 50. The

covariates are generated independently from a normal distribution with mean 0 and standard

deviation
√
3. The intercept is 0.1, the next 15 regression coefficients are 0.2, and the rest

are 0. We consider B = 50 batches where the batch size nb = 200 for each batch. Since for

p > 30, all 2p models cannot be stored in the computer memory, we conduct a screening to

choose a promising pool of models. Suppose the binary response variable in logistic regression

takes the values 1 and 0, denoting success and failure, respectively. The metric λ
[b]
i was intro-

duced in (11) for checking stability in the screening stage. We now discuss methods to define

λ
[b]
i in the context of logistic regression. Here λ

[b]
i is an estimate of E(Ỹi|D∗

b ) = P (Ỹi = 1|D∗
b ),

where Ỹi is a future response variable, generated from the same process that generated

Yi. We use a plug-in estimate for this probability: exp (xiβ
[b]
)/(1 + exp (xiβ

[b]
)), where

β
[b]

= 1
T

∑T
t=1 β

[b](t) is the MCMC estimate of β, and β[b](t) is the (p + 1)-dimensional esti-
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Figure 1: Performance of offline, Online 2, Online 1 BMA methods, and the full model offine
MLE for p = 10, for batches 10, 20, . . . , 100. Running time of the offline Bayesian
method is about 45 times that of the online Bayesian methods.
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mate at iteration t. This plug-in estimate is computationally inexpensive to calculate. But

if one is willing to spend more computing effort, other Bayesian estimates could be used. In

the screening stage we run the offline MC3 algorithm for 10,000 iterations and monitor the

stability metric defined in (11). Screening is stopped if one of the two conditions is met: the

metric reaches a threshold of 0.02 or less, or the 10th batch is reached. Offline computations

become prohibitively slow as the number of batches increases, so screening is stopped after

batch 10. Essentially these are tuning parameters for screening, which need to be set by

the data analyst, depending on the size of the datasets and speed of the algorithms. Online

methods are implemented with the distinct pool of models sampled in the final screening

stage. Figure 2 shows the results, which are similar to the enumerable case. Here the offline

method needs 128.4 minutes for a single dataset, looping through all batches, and the online

methods take 4.6 minutes for the same. The running time of the offline method is

about 28 times that of the online methods. The drop in accuracy of the MLE is quite

pronounced here.

5 Application

We apply the methods developed in the previous sections to streaming data from the National

Automotive Sampling System (NASS) Crashworthiness Data System (CDS). We analyze

occupant level data on traffic crashes from 2009 to 2015 (Luo and Song, 2020). The response

variable is an indicator for injury, which takes the value 1 if the occupant had an injury

and 0 otherwise. This is based on the variable MAIS (maximum known abbreviated injury

scale) for this occupant. We consider the following predictors related to the occupant:

AGE, HEIGHT, OCCRACE (occupant’s race), OCETHNIC (occupant’s ethnicity), ROLE
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Figure 2: Performance of offline, Online 2, Online 1 BMA methods, and the full model
offline MLE for p = 50, for batches 10, 15, . . . , 50. Running time of the offline Bayesian
method is about 28 times that of the online Bayesian methods.
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(driver vs. passenger), SEX, WEIGHT, and other predictors related to the vehicle and the

accident: BAGFAIL (air bag system failure), BELTANCH (shoulder belt upper anchorage

adjustment), EJCTAREA (ejection area), and PARUSE (police reported restraint use). Here

AGE, HEIGHT, and WEIGHT are numeric predictors and the rest are categorical, leading

to a total of 33 predictors, including the intercept term. To demonstrate the utility of BMA

in the presence of noise, we add 300 noise variables generated from a normal distribution

with mean 0 and variance 9, with a pairwise correlation of 0.5, following the idea of Ghosh

and Reiter (2013).

The dataset exhibits separation, that is for some linear combination of the predictors, a

subset of the response variables can be predicted perfectly. The concept of separation was

introduced by Albert and Anderson (1984), who showed that the MLE does not exist in such

a scenario. The effect of the choice of the prior distribution on the posterior distribution, in

binary regression models, under separation, has been studied extensively (Chen and Shao,

2001; Gelman et al., 2008; Speckman et al., 2009; Ghosh et al., 2018; Ghosh, 2019). Proper

priors are necessary in this case to guarantee a proper posterior. While there are many choices

of proper priors, we use the prior recommended by Greenland and Mansournia (2015), as

this prior has an interpretation of augmenting rows to the design matrix and the vector of

response variables, which in turn makes computation of the posterior mode straightforward,

with standard software for calculating the MLE.

Greenland and Mansournia (2015) suggest the use of the logF (m,m) prior for the re-

gression coefficients in logistic regression under separation. This prior has lighter tails than

a t-prior with m degrees of freedom but heavier tails than a normal. Suppose we use this
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prior for βj given γj = 1, then the prior density is given as follows (Brown et al., 2002):

p(βj|γj = 1) =
1

B(m/2,m/2)

eβjm/2

(1 + eβj)
m

∝
(

e(0β0+...0βj−1+1βj+0βj+1+...0βp)

1 + e(0β0+...0βj−1+1βj+0βj+1+...0βp)

)m/2

×(
1

1 + e(0β0+...0βj−1+1βj+0βj+1+...0βp)

)m/2

, (14)

where B(., .) is a Beta function. The last two lines in equation (14) show that the prior can be

written in the same form as the likelihood, for observations with xT
i = (0, . . . , 0, 1, 0, . . . , 0),

with 1 in the (j+1)th position, j = 0, 1, . . . , p. The prior representsm observations withm/2

successes and m/2 failures. Thus for computation of the posterior mode, the m rows corre-

sponding to the prior can be appended to the data and standard software for maximizing the

loglikelihood will then effectively maximize the log-posterior, up to a normalizing constant.

In principle one could consider independent priors of this form on all the components of βγ ,

but for a large p, that can potentially add excessive prior information. Since we mainly use

this prior to address separation, we first identify which variables are involved in separation

via the R package detectseparation (Kosmidis et al., 2023), and then specify this prior

only for the predictors affected by separation. We set m = 4 following the suggestion of

Agresti and Coull (1998), for binomial proportions. Under separation, Ghosh et al. (2018)

have also recommended using priors that have less heavy tails than a Cauchy, as it can lead

to unusually large regression coefficients in logistic regression. For m = 4, the logF (m,m)

prior will have less heavy tails than a t with 4 degrees of freedom, and thus much lighter than

a Cauchy prior, which seems reasonable in this scenario. We find that 11 of the (p+1) = 333

predictors, are involved in separation, which leads to augmenting 44 rows to the first batch,

corresponding to the prior.

Here we consider B = 20 batches, with batch size nb = 800, for each batch, leading
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to NB = 16, 000. We keep the last 438 observations for out of sample prediction. Let ρ

denote the prior inclusion probability, that is ρ = P (γj = 1), for j = 1, . . . , p. In the

simulation studies, we set ρ = 1/2. Since p = 332 is relatively large compared to the number

of predictors in the simulation studies, here we put a prior on ρ. Specifically, we let ρ ∼

Beta(a, b), with a commonly adopted choice of a = b = 1, which leads to a continuous

uniform prior on ρ (Scott and Berger, 2010). We compare the offline and online Bayesian

methods, as well as the posterior mode based on the full model. Screening is performed as in

Section 4.2, to choose the set of models. Here the screening period ends after the 5th batch,

and online computations start from the 6th batch onwards. The MCMC is run for 100,000

iterations for all methods (offline and online in screening stage).

Figure 3 shows the results for out of sample prediction of class labels, evaluated using

equation (13). Here the offline method needs 14.54 hours and the online methods take 0.8

hour for 20 batches. Thus, the running time of the offline method is about 18 times

that of the online methods. The advantage of using methods based on BMA over the

full model is most pronounced in the early batches, and a distinct gain from BMA is evident

throughout.

The estimated posterior inclusion probabilities for offline vs. online methods after ana-

lyzing the 20th batch, are displayed in Figure 4. The median probability models (MPMs)

(Barbieri and Berger, 2004) based on the offline method and Online 2 are in close agreement.

The MPM based on the offline method includes AGE, one category for SEX, WEIGHT, all

categories for PARUSE, one category of EJCTAREA. Online 2 includes all the variables as

offline, except one category of PARUSE, which indicates the use of shoulder belt. Online 1

includes all the variables as Online 2, and additionally includes one category of OCETHNIC,

which has an inclusion probability closer to 0.5 across all methods. All the noise variables

are effectively dropped by all methods.
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Figure 3: Performance of offline, Online 2, and Online 1 BMA methods, and the full model
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Figure 4: Estimates of posterior inclusion probabilities from offline, Online 2, and Online 1
BMA methods, for the application with p = 332, for the 20th batch. The dashed red line is
at 0.5, the prior inclusion probability.

6 Discussion

In the context of streaming data, when vast amounts of data can arrive sequentially, data

storage becomes expensive and traditional or offline methods become progressively slower
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with accumulation of more and more data. Online BMA methods introduced in this article

aim to address these two challenging aspects of streaming data, by storing only summaries

of historical data, and using a technique called renewable estimation, where the most recent

estimates are renewed with the current batch of data. To the best of our knowledge, the

online BMA methods proposed in this article, are one of the first to exploit the renewable

estimation framework, to incorporate variable selection uncertainty in the context of GLMs.

The results based on simulation studies and a real data analysis on traffic crashes suggest

that our online BMA methods can offer a fast and effective way to address model uncertainty,

with accuracy comparable to the gold standard offline BMA methods.

There are many possible variations and extensions of the methods developed in this

paper. Our current implementation of screening for large p involves running offline MCMC

for several batches in the initial period, to choose the pool of important models. While

this method is appealing and works quite well in practice, it comes at the cost of some

computational burden. One possibility is to first reduce the number of predictors by methods

such as sure screening (Fan and Lv, 2008), and then employ our current method of screening

using MCMC, which can be much faster. Alternative choices are available for the metric

used to assess stability in the screening stage, such as those based on the estimated regression

coefficients or marginal posterior inclusion probabilities, instead of classification probabilities.

Our focus has been on point estimates for BMA in logistic regression, but if one is

interested in credible intervals for classification probabilities, those can be obtained via Monte

Carlo sampling from the approximate joint posterior distribution of models and regression

parameters. For illustration, we used logistic regression, but the methods are applicable to

other members of the GLM family, such as Poisson and gamma regression.

Our implementation of the BIC approximation to the marginal likelihood is based on

the MLE of βγ or the posterior mode, under data augmentation priors (Greenland and

Mansournia, 2015). Alternative priors could be placed such as normal, power priors (Ibrahim
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et al., 2015), using the method of Raftery (1996).

Our current approach for large p relies on screening using MCMC, to choose a pool of

models with high posterior probability. The online methods are implemented for this pool

for subsequent batches. Developing an online sampling algorithm for models, that is letting

the pool of models vary with batches, based on MCMC, variational Bayesian methods, or

other stochastic algorithms such as the shotgun stochastic search (Hans et al., 2007) is an

interesting direction of research. Other interesting avenues include extension to models that

are not covered under the current framework.
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